Complex Numbers: Fundamental Concepts and Applications

Introduction to Complex Numbers

Complex numbers represent a fundamental extension of real numbers, enabling mathematical operations beyond the real number system. Denoted as ℂ, the complex number system finds extensive applications in mathematics, engineering, and physics.

Key Definition

A complex number takes the form a+bia + bi , where:

  • aa : real component
  • bb : imaginary component
  • ii : imaginary unit where i2=1i^2 = -1

Basic Operations with Complex Numbers

Addition and Subtraction

Addition: (a+bi)+(c+di)=(a+c)+(b+d)i(a+bi)+(c+di)=(a+c)+(b+d)i

Subtraction: (a+bi)(c+di)=(ac)+(bd)i(a+bi)-(c+di)=(a-c)+(b-d)i

Multiplication and Division

Multiplication: (a+bi)(c+di)=(acbd)+(ad+bc)i(a+bi)(c+di)=(ac-bd)+(ad+bc)i

Division: a+bic+di=(ac+bd)+(bcad)ic2+d2\frac{a+bi}{c+di}=\frac{(ac+bd)+(bc-ad)i}{c^2+d^2}

Properties and Forms

Complex Conjugate

For a complex number z=a+biz=a+bi , its conjugate is:

z=abi\overline{z}=a-bi

Modulus and Argument

Modulus: z=a2+b2|z|=\sqrt{a^2+b^2}

Argument: arg(z)=arctan(ba)\arg(z)=\arctan(\frac{b}{a})

Alternative Representations

Polar Form

z=r(cosθ+isinθ)z=r(\cos\theta+i\sin\theta)

Exponential Form

z=reiθz=re^{i\theta}

Powers and Roots of Complex Numbers

Powers of Complex Numbers

For a complex number in exponential form z=reiθz=re^{i\theta} :

zn=(reiθ)n=rneinθz^n=(re^{i\theta})^n=r^ne^{in\theta}

where n is a positive integer

Complex Roots

The n -th root of a complex number has n distinct values:

wk=r1nei(θ+2kπ)nw_k=r^{\frac{1}{n}}e^{\frac{i(\theta+2k\pi)}{n}}

where k=0,1,2,,n1k = 0,1,2,\ldots,n-1

Key Properties

  • Every complex number (except 0) has exactly n distinct n -th roots
  • The roots form a regular polygon in the complex plane
  • Each successive root is obtained by rotating through an angle of 2πn\frac{2\pi}{n}

Advanced Applications

De Moivre's Theorem

(cosθ+isinθ)n=cos(nθ)+isin(nθ)(\cos\theta+i\sin\theta)^n=\cos(n\theta)+i\sin(n\theta)

Complex Analysis Foundations

Cauchy-Riemann Equations

For a complex function f(z)=u(x,y)+iv(x,y)f(z)=u(x,y)+iv(x,y):

ux=vy\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} and uy=vx\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}